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Optimum Sectional Shape of Dominant
Mode Waveguide

MITSUNORI SUZUKI aNnp TOSHIO HOSONO, MEMBER, IEEE

Abstract — Approximating the cross section of a waveguide by a trun-
cated Fourier series and using the finite element method (FEM), together
with the quasi-Newton optimization method, the optimum cross section of
the dominant mode waveguide which has minimum conductor loss is
obtained.

We take the attenuation constant at the cutoff frequency of the second
higher mode as the index of good quality. This index simplifies the
computation and gives a unique solution.

The obtained optimum cross section is a kind of cigar shape. The
Fourier series converges quite quickly, supporting the reliability of the
numerical results. This optimum cross section gives 9.4-percent smaller
conductor loss than, and the same frequency bandwidth as, the standard
rectangular cross section. The theoretical results are confirmed by mea-
surements.

I. INTRODUCTION

N THE DESIGN of microwave communication systems,
Ithe requirements for the bandwidth and attenuation of
the antenna feeders are quite stringent. While rectangular
or elliptical waveguides are commonly used for rather long
transmission, there has been no sign indicating the optimal-
ity of these standard waveguides.

Though some investigations on a specific sectional shape
were made [1], there has not been published any report on
optimality concerning general sectional shapes. Recently,
numerical analysis using the finite element method (FEM)
has evolved, and the transmission characteristics of wave-
guides of general sectional shape have been analyzed
numerically [2]-[4], but no solution has been reported for
the optimization of loss characteristics of a dominant mode
waveguide.

In the present paper, using the truncated Fourier series
as the trial function for the sectional shape, together with
the FEM and quasi-Newton optimization method, we have
obtained the optimum cross section of a dominant mode
waveguide which gives minimum conductor loss among
other shapes.

II. RELATIVE ATTENUATION FACTOR

As an index for comparison of the dominant mode
waveguide attenuation characteristics for an arbitrary
shape, a definition is given to a relative attenuation factor
M. This factor is the dominant mode attenuation constant
for a prescribed shape at the second mode cutoff frequency.
Assuming the lowest transmission mode of the waveguide
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as an H mode, the relative attenuation factor of the mode
is given by the following equation [5}:
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The coefficients K¢, and Kc, are the lowest and the
secondary eigenvalues of the following Helmholz equation,
over the cross section S and with Neumann boundary
conditions

Q
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In this case, ds is the line element of the wall cross
section and the dimensionality of 4 and B is [1/m°] and
[1/m], respectively.

Furthermore, (2) is reduced to the following form which
represents the conductor loss a at the secondary mode’s
cutoff frequency by putting P =1:

v+ K’ =0

K 2_K 2
M=U(P=1)= CZK& !
2
1 Kc}
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The value of M is calculated analytically for typical
shapes. We get 0.920 for an optimized rectangle with an
axis ratio of 1:2, and 1.11 for an ellipse optimized with an
eccentricity of 0.61. Namely, the ellipse is about 21-percent
larger than the rectangle in the M value.

When the attenuation characteristic of optimized rectan-
gles and ellipses is calculated by (2), it shows a decreasing
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tendency between the first and second cutoff frequencies.
Namely, in the interval between the first and second cutoff
frequencies, that represents the dominant mode transmis-
sion bandwidth, the minimum value of U(p) is given by
M. This is not necessarily true for a single-mode broad-band
waveguide like a ridge waveguide. It can be shown, how-
ever, that within the range of a shape parameter repre-
senting a ridge, the minimum attenuation value within the
dominant mode transmission band is always larger than
the value of M for the optimized shape parameter. There-
fore, for any cross-sectional configuration, the relative at-
tenuation factor M can be found, and the shape for mini-
mum attenuation is determined.

TRIAL FUNCTION OF CROSS-SECTIONAL
CONFIGURATION

I11.

As a function for expressing an arbitrary cross-sectional
configuration, a finite Fourier series may be proposed. The
Fourier series, though simple in the function form, has a
defect in that it cannot represent a nonconvex shape. As a
function capable of nonconvex representation, a spline-
cubic approximation can be cited. In the nonconvex shape,
however, the number of configuration parameters in-
creases, thus making the calculation process cumbersome.
Therefore, while the calculation by the spline-curve is a
rough approximation, if it is found that that the configura-
tion to make M smaller can be expressed by a Fourier
series, then the Fourier series alone will do [6].

As shown in Fig. 1, expressing the cross-sectional geome-
try by a polar coordinate representation r = R(8), we get
an equation with five Fourier coefficients

4
R(0)=ay+ Y. a,cos2nb.

n=1

(6)

Equation (6) means that the angle of intersection of the
symmetric axes of cross section is perpendicular. Selection
of the number of series of Fourier coefficients is made by
how close the shape of the cross-sectional element for FEM
can approach the configuration expressed by the Fourier
expansion.

Because of the limitation of computers’ memories, the
truncated number of the Fourier series should be re-
stricted.

However, the adequacy of the Fourier series as a trial
function can be confirmed by evaluating the convergence
of the series in the optimized configuration.

The FEM is applied in the four-division domain shown
in Fig. 1. In order to obtain a good approximation for the
curve, six-node isoparametric curved elements are used [7].
The number of division is 36. The boundary conditions are
the Neumann condition on the curve, and a combination
of Dirichlet and Neumann conditions on the X-axes and
Y-axes.

The relative attenuation factor M is determined by the
FEM according to the automatic sub-division program of
the domain by giving Fourier coefficients a,---,a,. In
order to avoid the similar-figure condition, any one of the
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~ Fig. 1. Approximate function for waveguide cross-sectional view.
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Fig. 2. Optimized configuration of waveguide cross section for domi-
nant mode with Fourier coefficients ag = 0.7201, a, = 0.2786, a, =
0.0171, a;=0.0114, a,=—0.0044. Eigenvalues: Kcf =294, Kcs=
11.68.

coefficients being fixed, the number of variables becomes

4. For these 4 variables, a group of eigenvalues is calcu-

lated, the lowest and second eigenvalues are selected, and

further the lowest eigenfunction is calculated. As the
method of obtaining the minimized M, a quasi-Newton
method known as the multivariable optimizing numerical

solution is adopted [8].

IV. OpTiMIZED CONFIGURATION AND ITS PROPERTY

The Fourier coefficients obtained pursuant to the opti-
mizing calculation process described in Sections II and III
are, respectively

ap=0.7201 a,=02786 a,=0.0171
a;=—00114 a,=—0.0044.

Rewritting these values by normalizing with the second
cutoff wavelength Ac,, we get

R,(0)- }\1 =0.392+0.152cos26
2 4+0.009cos48
—0.006cos 66
—0.002cos 86 @)
and
M,=0.833 (8)

Aya®=5978 Bya=3.772

(©)
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Kdo'd=1.716 Kc20'a=3.418
Kao=2m/A g Kew=27/X 5

(10)

where

a half length of the longer side on the X-axes,
Ao dominants mode’s cutoff wavelength,
Ao second mode’s cutoff wavelength.

The following are the characteristic phenomena found
out numerically under the optimized conditions.

1) The Fourier series selected as a configuration function
has a good convergence, with the first and second items
dominating. The third and fourth coefficients are less than
3 percent in terms of amplitude. Thus, the adequacy of
representation by means of the Fourier series can be veri-
fied.

2) The cutoff frequency ratio between the dominant
mode and higher modes K., /K, becomes nearly 2.0,
which is equal to the maximum bandwidth of a rectangular
waveguide. This means that the optimized configuration
not only enjoys a minimum attenuation, but it also com-
pares favorably in the bandwidth likewise with the rectan-
gular configuration.

3) The second modes—the H; mode (according to the
rectangular mode representation) and H,, mode—are equal
in eigenvalues, and accordingly they are in degenerated
conditions. The conditions (2) and (3) are the results
deduced from a numerical calculation, and are not analyti-
cal solutions. Since this is a special situation as a stationary
condition, it is considered to provide a clue to approaching
the analytical solution.

4) When the minimum value of the relative attenuation
coefficient M is compared with that of other typical config-
urations, it is 9.4 percent smaller than a rectangle and 25
percent smaller than an ellipse.

5) In the circumferential length of cross sections, it is 8
percent less than a rectangle, and 2 percent less than an
ellipse.

6) The minimum value of U(P) occurs when P =1.17,
and it is 0.824. This result does not conflict with the
assumption of calculation that the minimum value exists in
a higher stage than the second mode cutoff frequency.

V. OprTiMIZED CIGAR SHAPE

From the previous sections, it is known that the char-
acteristics of the optimized configuration expressed by a
Fourier series are not only the minimized attenuation of
the dominant mode, but also its broad bandwidth and its
short conductor circumferential length, i.e., a merit of less
material requirement.

Also, it was learned that this configuration has a smooth
and even appearance, showing rather a cigar-like shape.

Based on the foregoing knowledge, an approximation to
the optimized configuration is conceived of a simple cigar
construction which is made up of straight sides and semi-
circles, and is useful in both manufacture and inspection.
This cigar shape involves a configuration parameter of a
mere axis ratio, and is easier to find the optimized condi-
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Fig. 3. Optimized cigar shape and its parameters. Bigenvalues: Kc? =
3.02, Ke2 =11.63.
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Fig. 4. Comparison of attenuation-frequency characteristics normalized
with second mode’s cutoff frequencies.

tions by a numerical calculation than the case of approxi-
mation with the Fourier series.

The results of this calculation are shown in Fig. 3, the
ratio of longer axis to shorter axis being 0.487. The value of
M at this is

M (optimized cigar) = 0.840.
Let the length of the longer side be a, then
K -a=174 K, a=341 (12)
A-a>=6.04 B-a=3.79. (13)

The attenuation characteristic of this cigar shape differs
from that of the optimized configuration by the Fourier
series representation merely in its transmission bandwidth
ratio of 1.96, which is 2 percent narrower than that of the
optimized condition 2.00.

Fig. 4 shows the numerical calculation results of attenua-
tion-frequency characteristics for both cases.

(11)

VL

In order to examine the accuracy of the numerical
calculation concerning the optimized configuration, the
attenuation-frequency characteristics and cutoff frequen-

COMPARISON WITH MEASUREMENT
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cies are measured on both rectangular and optimized cigar
shapes, which are made by press-drawing the same material
under the same manufacturing process. The difference in
attenuation constant of around 10 percent, though im-
portant in practice, poses a rather troublesome problem to
confirm by measurement. The rectangular waveguide is
designed for a construction confirming to the IEC standard
WR-159, with dimensions; ID (40+0.1 mm)X(20+0.1
mm), and wall thickness 1.6 mm, and 30 m-long are
prepared. The optimized cigar shape is of (ID longer axis

43.2+0.1 mm(X(ID shorter axis 21.0440.1))), and the

- wall thickness and unit length are the same as the rectangu-

lar one. And the second mode cutoff frequencies of both
are designed for 7.50 GHz. The conductor material is taken
from the same lot of deoxidized phosphorus copper con-
sisting of 99.9 percent Cu or more, 0.04 percent P or less.

Fig. 5 shows the photos of both waveguides with flanges.
The attenuation of 30 m-long samples is measured by a
attenuator substitution method. To curb the effect of re-
flection, taper-transformers for the rectangular /cigar shape
are prepared. This was made by a high- pre01s1on electro-
forming process.

The accuracy of measurement by the substitution pro-
cess is +0.05 dB, which accounts for about 3 percent of

- the approximate sample loss of 1.5 dB. However, repetitive
measurements on many frequencies have brought about an
accuracy improvement, so the error in this measurement
may be said to be less than 1 percent.

The cutoff frequency is measured in the cavity resonator
method. The separation of the higher modes from the
dominant mode is achieved by changing the position and
inclination angle of the coupling slit provided on the
waveguide shorting plate. The length / of the wavegu1de for
the cavity is 300 mm.

The cutoff frequencies are calculated from the observed
resonant frequency f,, by the following equation:

ya-(52) (19)

where / is the length of cavity, »nis the number of degree of
resonance mode, and G, is the velocity of light.

Because the accuracy of the sample length /, as well as
that of the frequency measurement, can be easily kept 0.5
percent or less, the accuracy of the cutoff frequencies
should be better than that of the attenuation measurement.
Thus the measured attenuation versus frequency character-
istics and the cutoff frequencies of rectangular and cigar
shapes are shown in Fig. 6. The measured frequency band
regarding the attenuation lies between 5.8 ~ 7.6 GHz, which
approaches the dominant mode transmission band.

The calculated values ‘are shown by full lines as exten-
sions to Fig. 4. The conductivity of o for a 100-percent
pure copper value of 5.92X 10" mho/m in the dc range is
adopted.

The relative differences between rectangular and cigar

shapes are: against the calculated value of 9.4 percent at

the second cutoff frequency of 7.5 GHz, the measured
value is 8.5 percent; and similarly, against 10.5 percent at
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Fig. 5. Rectangular and optimized cigar-shaped waveguides with flanges.
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Fig. 6. Attenuation characteristics and cutoff frequencies.

6.0 GHz, is 9.2 percent, respectively.

This good agreement of relative values over a wide
frequency range can be easily deduced by taking K, /K 4
=1.96 in (2) and by using, as A, B values, the values from
(13) for cigar shapes, and the analytical solution for rectan-
gular shapes. ‘ ‘

The following equation will be found to be useful as an
equation for expressing the ratio of losses of rectangular
and cigar shapes:

1  3.61P2+0.82

P  3.84P% -1

(P>0.51)

(15)

U (optimized cigar) =



840 ,

1 4P*+1
U (rectangular) = . (P>05) (16)
wP 4P? 1
SO
U (optimized cigar) _ \/ 4P2-1 [ 3.61P% +0.842 ]
U (rectangular) 3.84P%2 -1 4P +1

(P>051). (17)

Namely, the attenuation-frequency characteristics of the

optimized cigar shape having the second mode’s cutoff
frequency equal to the rectangular waveguide of axis ratio
2:1 can be obtained by multiplying (17) by a coefficient
for the attenuation characteristics of the rectangular wave-
guide.

The differences between the calculated values and mea-
sured values can be understood by taking the dc conductiv-
ity as an effective conductivity in the microwave band.

The loss increment of about 9 percent of the measured
values relative to the calculated values over a wide frequency
band means the reduction of the effective conductivity of
arqund 20 percent in the microwave band.

If the effective conductivity is taken as 4.9 x 107 mhos /m
for both rectangular and cigar shapes, the measured values
and calculated values will show"a close agreement as shown
by dotted lines.

The measured values of cutoff wavelengths show a close
agreement with the calculated values by a deviation of less
than 0.5 percent for both rectangular and cigar shapes. A
slight deviation of two higher mode cutoff frequencies of
cigar shape is considered to be within the manufacturing
tolerance.

VII. CoNCLUSION

Adoption of a coefficient with which to make a relative

comparison of the dominant mode transmission loss with
respect to an arbitrary cross-sectional shape has made it
possible to find a optimized configuration having mini-
mum loss.

The accuracy of FEM and the numerical optimization by
the quasi-Newton Method as adopted has proved to be
high enough to evaluate the improvement effects of the
characteristics.

The optimized shape of the cross section can be ex-
pressed by a Fourier series for the polar coordinate with

- good convergence. Furthermore, it can be approximated by
a cigar shape with an axis ratio which consists of a combi-
nation of semicircles and rectangular shapes.

Compared with the standard rectangular waveguide of
axis ratio 2:1, it is more than 9.4 percent smaller in the

attenuation, and the same in the dominant mode transmis- .

sion bandwidth. Besides, several interesting properties have
been found. In order to ascertain the accuracy of the
foregoing numerical analytical method and the calculated
values, measurements have been made of the attenuation
frequency characteristics and cutoff frequencies of rectan-
gular and cigar shapes, which are carefully made of the
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~ same material by the same manufacturing process. For an

attenuation calculated value of 9.4 percent, a value of
above 8.5 percent is registered by an actual measurement,

-and for the higher mode cutoff frequencies, an agreement

between calculated and measured values is obtained within
the manufacturing tolerance. These results are considered

-to be useful in applications such as long-length antenna

feeders, high-power waveguides, and high-Q microwave
circuit components.
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An Accurate Approxjm:;tion of the Impedance of a
- Circular Cylinder Concentric with an
External Square Tube

H. J. RIBLET, FELLOW, IEEE

Abstract —The problem of determining the characteristic impedance of a
concentri¢ coaxial transmission line having a circular iriner conductor and a
sqilare‘ outer conductor is reexamined. The Green’s function for a rectangle
is used to determine the geometrical capacitance of a series of structures
ranging from 1-46 Q with an error less than 10 ~5. The method of analysis
is illustrated in detail for the 1-Q case. The results are presented in ternis
of the “outer shield factor” R, which is defined as the ratio of the
diameter of an. outer circle, having the same capacitance as. the outer
square, to the side of the outer square. Values of this ratio are tabulated for
impedances ranging from 1-46 . These values are also plotted on a curve
which can be read with an error of the order of 0.02 £ for impedances
greater than 3 .

I. INTRODUCTION

The determination of the characteristic impedance of the con-
centric coaxial line in which the outer conductor is a square and
the inner conductor is a circle has been the subject of numerous

treatments [1]-[16] appearing during the past forty years. In his

discussion of this problem, Cohn [10] suggested that additional
data between 30 and ‘2 © would be useful. This short paper
provides this information.

Manuscript received June 25, 1982; revised March 15, 1983.
The author is with Microwave Development Labs, Needham, MA 02194.

The treatment of this problem by Frankel [1], Oberhettinger
and Magnus [2, pp. 75-78], and later by Laura and Luisoni [13],
[14], is one in which the potential problem is solved exactly in a
doubly connected region-in which the outer conductor is a
square, while the inner conductor is a four-lobed curve which
approaches a circlé ever more closely as its size decreases. Each
circle internal to and concentric with the square has the same
potential at eight equi-spaced points on its circumference. This
potential function, except for an additive constant, is the Green’s
function [2,p. 36] for the square which has a logarithmic singu-
larity at its center.

In this paper, a potential function is constructed, which is
nearly constant on the outer circumference of the inner conduc-
tor, by suitably combmmg a number of Green’s functions for the
outer square whose logarithmic singularities are all.inside of this
circle.

IL TeE GREEN’S FUNCTION

Fig. 1 shows an infinite lattice of positive and negative line
charges whose logarithmic potential is zero along the boundary of
a rectangle of width 24 and height 25 centered at the origin. This
follows from the fact that, for every negative charge on oné side
of a boundary, there is an equal positive charge mirrored in it on
the opposite side.

Consider for a moment the point Z’ which is inside the
rectangle in question. It determines a doubly infinite lattice of
line charges which differ from it in location by integral multiples
of 4a in the horizontal direction and by integral multiples of 45
in the vertical direction. Similar remarks can be made about the

.other three line charges shown in the upper right-hand quadrant
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