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Sectional Shape of Dominant
Mode Waveguide

MITSUNORI SUZUKI AND TOSHIO HOSONO, MEMBER, IEEE

Abstract —Approximating the cross section of a waveguide by a trnn-
cated Fourier series and using the finite element method (FEM), together
with the quasi-Newton optimization method, the optimum cross section of

the dominant mode waveguide which has minimum conductor loss is

obtained.

We take the attenuation constant at the cutoff freqnency of the second

higher mode as the index of good quality. This index simplifies the

computation and gives a unique solution.

The obtained optimum cross section is a kind of cigar shape. The

Fourier series converges quite quickfy, supporting the reliability of the

numerical results. This optimum cross section gives 9.4-percent smaller

conductor loss than, and the same frequency bandwidth as, the standard

rectangular cross section. The theoretical results are confirmed by mea-

surements.

1. INTRODUCTION

I N THE DESIGN of microwave communication systems,

the requirements for the bandwidth and attenuation of

the antenna feeders are quite stringent. While rectangular

or elliptical waveguides are commonly used for rather long

transmission, there has been no sign indicating the optimal-

ity of these standard waveguides.

Though some investigations on a specific sectional shape

were made [1], there has not been published any report on

optimality concerning general sectional shapes. Recently,

numerical analysis using the finite element method (FEM)

has evolved, and the transmission characteristics of wave-

guides of general sectional shape have been analyzed

numerically [2]–[4], but no solution has been reported for

the optimization of loss characteristics of a dominant mode

waveguide.

In the present paper, using the truncated Fourier series

as the trial function for the sectional shape, together with

the FEM and quasi-Newton optimization method, we have

obtained the optimum cross section of a dominant mode

waveguide which gives minimum conductor loss among

other shapes.

H. I@LATIVE ATTENUATION FACTOR

As an index for comparison of the dominant mode

waveguide attenuation characteristics for an arbitrary

shape, a definition is given to a relative attenuation factor

M. This factor is the dominant mode attenuation constant

for a prescribed shape at the second mode cutoff frequency.

Assuming the lowest transmission mode of the waveguide
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as an H mode, the relative attenuation factor of the mode

is given by the following equation [5]:

a oKc; 1(neper) =
r

& “U(P) (1)
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intrinsic impedance of free space (ohms),

conductivity of the conductor wall (Siemens),

variable normalized with second mode cutoff

frequency, f. /fc2 = K. /Kc2

The coefficients Kcl and KC2 are the lowest and the

secondary eigenvalues of the following Hehnholz equation,

over the cross section S and with Neumann boundary

conditions

8+
V2qs+Kc2@=0 ~=o. (4)

In this case, ds is the line element of the wall cross

section and the dimensionality of A and B is [1/nz3 ] and

[l/m], respectively.

Furthermore, (2) is reduced to the following form which

represents the conductor loss a at the secondary mode’s

cutoff frequency by putting P =1:

{

Kc; – Kc;
M= U(P=l)= KC2

2

“[1 Kc:
—A+
Kc; Kc; – Kc; 1

B . (5)

The value of M is calculated analytically for typical

shapes. We get 0.920 for an optimized rectangle with an

axis ratio of 1:2, and 1.11 for an ellipse optimized with an

eccentricity y of 0.61. Namely, the ellipse is about 21-percent

larger than the rectangle in the M value.

When the attenuation characteristic of optimized rectan-

gles and ellipses is calculated by (2), it shows a decreasing
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tendency between the first and second cutoff frequencies.

Namely, in the interval between the first and second cutoff

frequencies, that represents the dominant mode transmis-

sion bandwidth, the minimum value of U(p) is given by

M. This is not necessarily true for a single-mode broad-band

waveguide like a ridge waveguide. It can be shown, how-

ever, that within the range of a shape parameter repre-

senting a ridge, the minimum attenuation value within the

dominant mode transmission band is always larger than

the value of M for the optimized shape parameter. There-

fore, for any cross-sectional configuration, the relative at-

tenuation factor M can be found, and the shape for mini-

mum attenuation is determined.

III. TRIAL FUNCTION OF CROSS-SECTIONAIL

CONFIGURATION

As a function for expressing an arbitrary cross-sectional

configuration, a finite Fourier series maybe proposed. The

Fourier series, though simple in the function form, has a

defect in that it cannot represent a nonconvex shape. As a

function capable of nonconvex representation, a spline-

cubic approximation can be cited. In the nonconvex shape,

however, the number of configuration parameters in-

creases, thus making the calculation process cumbersome.

Therefore, while the calculation by the spline-curve is a

rough approximation, if it is found that that the ccmfigura-

tion to make M smaller can be expressed by a Fourier

series, then the Fourier series alone will do [6].

As shown in Fig. 1, expressing the cross-sectional geome-

try by a polar coordinate representation r = R(f3), we get

an equation with five Fourier coefficients

4

Z/(0) =ao+ ~ ancos2nf3. (6)
~=1

Equation (6) means that the angle of intersection of the

syimnetric axes of cross section is perpendicular. Selection

of the number of series of Fourier coefficients is made by

how close the shape of the cross-sectional element for FEM

can approach the configuration expressed by the Fourier

expansion.

Because of the limitation of computers’ memories, the

truncated number of the Fourier series should be re-

stricted.

However, the adequacy of the Fourier series as a, trial

function can be confirmed by evaluating the convergence

of the series in the optimized configuration.
The FEM is applied in the four-division domain shown

in Fig. 1. In order to obtain a good approximation for the

curve, six-node isoparametric curved elements are used [7].

The number of division is 36. The boundary conditions are

the Neumann condition on the curve, and a combination

of Dirichlet and Neumann conditions on the X-axes and

Y-axes.

The relative attenuation factor M is determined by the

FEM according to the automatic sub-division program of

the domain by giving Fourier coefficients a., -” “, a4. In

order to avoid the similar-figure condition, any one of the

v

- Fig. 1. Approximate function for waveguide cross-sectional view.
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Fig. 2. Optimized configuration of waveguide cross section for domi-
nant mode with Fourier coefficients a. = 0.7201, al = 0.2786, a =
0.0171, a3 = 0.0114, a~ = – 0.0044. Eigenvalues: Kc;= 2.94, Kc:=

11.68.

coefficients being fixed, the number of variables becomes

4. For these, 4 variables, a group of eigenvalues is calcu-

lated, the lowest and second eigenvalues are selected, and

further the lowest eigenfunction is calculated. As the

method of obtaining the minimized M, a quasi-Newton

method known as the multivariable optimizing numerical

solution is adopted [8].

IV. OPTIMIZED CONFIGURATION AND ITS PROPERTY

The Fourier coefficients obtained pursuant to the opti-

mizing calculation process described in Sections II and III

are, respectively

a. = 0.7201 al = 0.2786 az = 0.0171

as = –0.0114 a4 = –0.0044.

Rewriting these values by normalizing with the second

cutoff wavelength Acz, we get

Ro(6)”# = 0.392 +0.152 cos20
C2

+ 0.009 cos4e

– 0.006 COS68

– 0.002cos 8f3 (7)

and

M.= 0.833 (8)

Aoa3 = 5.978 Boa= 3.772 (9)
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KCIO. a =1.716 KC20. a = 3.418 (lo)

Kcl~ = 27r/Aclo K.20 = z77/~c20

where

a half length of the longer side on the X-axes,

A ,Io dominants mode’s cutoff wavelength,

A .20 second mode’s cutoff wavelength.

The following are the characteristic phenomena found

out numerically under the optimized conditions.

1) The Fourier series selected as a configuration function

has a good convergence, with the first and second items

dominating. The third and fourth coefficients are less than

3 percent in terms of amplitude. Thus, the adequacy of

representation by means of the Fourier series can be veri-

fied.

2) The cutoff frequency ratio between the dominant

mode and higher modes KC20 /KC1o becomes nearly 2.0,

which is equal to the maximum bandwidth of a rectangular

waveguide. This means that the optimized configuration

not only enjoys a minimum attenuation, but it also com-

pares favorably in the bandwidth likewise with the rectan-

gular configuration.

3) The second modes—the Hol mode (according to the

rectangular mode representation) and H20 mode—are equal

in eigenvalues, and accordingly they are in degenerated

conditions. The conditions (2) and (3) are the results

deduced from a numerical calculation, and are not analyti-

cal solutions. Since this is a special situation as a stationary

condition, it is considered to provide a clue to approaching

the analytical solution.

4) When the minimum value of the relative attenuation

coefficient M is compared with that of other typical config-

urations, it is 9.4 percent smaller than a rectangle and 25

percent smaller than an ellipse.

5) In the circumferential length of cross sections, it is 8

percent less than a rectangle, and 2 percent less than an

ellipse.

6) The minimum value of U(P) occurs when P =1.17,

and it is 0.824. This result does not conflict with the

assumption of calculation that the minimum value exists in

a higher stage than the second mode cutoff frequency.

V. OPTIMIZED CIGAR SHAPE

From the previous sections, it is known that the char-

acteristics of the optimized configuration expressed by a

Fourier series are not only the minimized attenuation of

the dominant mode, but also its broad bandwidth and its

short conductor circumferential length, i.e., a merit of less

material requirement.

Also, it was learned that this configuration has a smooth

and even appearance, showing rather a cigar-like shape.

Based on the foregoing knowledge, an approximation to

the optimized configuration & conceived of a simple cigar

construction which is made up of straight sides and semi-

circles, and is useful in both manufacture and inspection.

This cigar shape involves a configuration parameter of a

mere axis ratio, and is easier to find the optimized condi-
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Fig. 3. Optimized cigar shape and its parameters. Eigenvalues: Kc; =
3.02, Kc; = 11.63.
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Fig. 4. Comparison of attenuation-frequency characteristics normalized
with second mode’s cutoff frequencies.

tions by a numerical calculation than the case of approxi-

mation with the Fourier series.

The results of this calculation are shown in Fig. 3, the

ratio of longer axis to shorter axis being 0.487. The value of

Mat this is

M (optimized cigar)= 0.840. (11)

Let the length of the longer side be a, then

KC1. a=l.74 KC2. a=3.41 (12)

A.a3= 6.04 B.a=3.79. (13)

The attenuation characteristic of this cigar shape differs

from that of the optimized configuration by the Fourier

series representation merely in its transmission bandwidth

ratio of 1.96, which is 2 percent narrower than that of the

optimized condition 2.00.

Fig. 4 shows the numerical calculation results of attenua-

tion-frequency characteristics for both cases.

VI. COMPARISON WITH MEASUREMENT

In order to examine the accuracy of the numerical

calculation concerning the optimized configuration, the

attenuation-frequency characteristics and cutoff frequen-



SUZUKI AND HOSONO: OPTIMUM SHAPE OF DOMINANT MODE WAVEGUIDE 839

ties are measured on both rectangular and optimized cigar

shapes, which are made by press-drawing the same material

under the same manufacturing process. The difference in

attenuation constant of around 10 percent, though im-

portant in practice, poses a rather troublesome problem to

confirm by measurement. The rectangular waveguide is

designed for a construction confirming to the IEC standard

WR-159, with dimensions; ID (40+ 0.1 mm)X(20 + 0.1

mm), and wall thickness 1.6 mm, and 30 m-long are

prepared. The optimized cigar shape is of (ID longer axis

43.2 +0.1 rnm( x (ID shorter axis 21.04+0.1))), and the

wall thickness and unit length are the same as the rectangu-

lar one. And the second mode cutoff frequencies of both

are designed for 7.50 GHz. The conductor material is taken

from the same lot of deoxidized phosphorus copper con-

sisting of 99.9 percent Cu or more, 0.04 percent P or less.

Fig. 5 shows the photos of both waveguides with flanges.

The attenuation of 30 m-long samples is measured by a

attenuator substitution method. To curb the effect of re-

flection, taper-transformers for the rectangular/cigar shape

are prepared. This was made by a high-precision electro-

forming process.

The accuracy of measurement by the substitution pro-

cess is +0.05 dB, which accounts for about 3 percent of

the approximate sample loss of 1.5 dB. However, repetitive

measurements on many frequencies have brought about an

accuracy improvement, so the error in this measurement

may be said to be less than 1 percent.

The cutoff frequency is measured in the cavity resonator

method. The separation of the higher modes from the

dominant mode is achieved by changing the position and

inclination angle of the coupling slit provided on the

waveguide shorting plate. The length 1 of the waveguide for

the cavity is 300 mm.. .-
The cutoff frequencies are calculated from the observed

resonant frequency frn by the following equation:

(14)

where 1is the length of cavity, n is the number of degree of

resonance mode, and COis the velocity of light.

Because the accuracy of the sample length 1, as well as

that of the frequency measurement, can be easily kept 0.5

percent or less, the accuracy of the cutoff frequencies

should be better than that of the attenuation measurement.

Thus the measured attenuation versus frequency character-

istics and the cutoff frequencies of rectangular and cigar

shapes are shown in Fig. 6. The measured frequency band

regarding the attenuation lies between 5.8 -7.6 GHz, which

approaches the dominant mode transmission band.

The calculated values are shown by full lines as exten-

sions to Fig. 4. The conductivity y of u for a 100-percent
pure copper value of 5.92X 107 mho/m in the dc range is

adopted.

The relative differences between rectangular and cigar

shapes are: against the calculated value of 9.4 percent ‘at

the second cutoff frequency of 7.5 GHz, the measured

value is 8.5 percent; and similarly, against 10.5 percent at

Fig. 5. Rectangukw and optimized cigar-shaped waveguides with flanges.
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Fig. 6 Attenuation characteristics and cutoff frequencies.

6.0 GHz, is 9.2 percent, respectively.

This good agreement of relative values over a wide

frequency range can be easily deduced by taking KC2/KC1

= 1.96 in (2) and by using, as A, B values, the values from

(13) for cigar shapes, and the analytical solution for rectan-

gular shapes.

The following equation will be found to be useful as an

equation for expressing the ratio of losses of rectangular

and cigar shapes:

1
U (optimized cigar)= — o 3“61P2 ‘0”82 (P> 0.51)

m@ d~

(15)
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1
U (rectangular)= —. 4P’ ‘1 (P> 0.5) (16)

T@ ~~

so

U (optimized cigar)

U (rectangular) ‘l,:;~:l [3”6:Ty]

(P> 0.51). (17)

Namely, the attenuation-frequency characteristics of the

optimized cigar shape having the second mode’s cutoff

frequency equal to the rectangular waveguide of axis ratio

2:1 can be obtained by multiplying (17) by a coefficient

for the attenuation characteristics of the rectangular wave-

guide.

The differences between the calculated values and mea-

sured values cart be understood by taking the dc conductiv-

ity as an effective conductivity in the microwave band.

The loss increment of about 9 percent of the measured

values relative to the calculated values over a wide frequency

band means the reduction of the effective conductivity of

arqund 20 percent ‘in the microwave band.

If the effective conductivity is taken as 4.9X 107 mhos/m

for both rectangular and cigar shapes, the measured values

and calculated values will show-a close agreement as shown

by dotted lines.

The measured values of cutoff wavelengths show a close

agreement with the calculated values by a deviation of less

than 0.$ percent for both rectangular and cigar shapes. A

slight deviation of two higher mode cutoff frequencies of

cigar shape is considered to be within the manufacturing

tolerance.

VII. CONCLUSION

Adoption of a coefficient with which to make a relative

comparison of the dominant mode transmission loss with

respect to an arbitrary cross-sectional shape has made it

possible to find a optimized configuration having mini-

mum loss.

The accuracy of FEM and the numerical optimization by

the quasi-Newton Method as adopted has proved to be

high enough to evaluate the improvement effects of the

characteristics.

The optimized shape of the cross section can be ex-

pressed by a Fourier series for the polar coordinate with

good convergence. Furthermore, it can be approximated by

a cigar shape with an axis ratio which consists of a combi-

nation of semicircles and rectangular shapes.

Compared with the stand~d rectangular waveguide of

axis ratio 2:1, it is more than 9.4 percent smaller in the

attenuation, and the same in the dominant mode transmis-

sion bandwidth. Besides, several interesting properties have
been found. In order to ascertain the accuracy of the

foregoing numerical analytical method and the calculated

values, measurements, have been made of the attenuation

frequency characteristics and cutoff frequencies of rectart-

gular and cigar shapes, which are carefully made of the

same material by the same manufacturing process. For an

attenuation calculated value of 9.4 percent, a value of

above 8.5 percent is registered by an actual measurement,

and for the higher mode cutoff frequencies, an agreement

between calculated and measured values is obtained within

the manufacturing tolerance. These results are considered

to be useful in applications such as long-length antenna

feeders, high-power waveguides, and high-Q microwave

circuit components.
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An Accurate Approximation of the Impedance of a

Circular Cylinder Concentric with an

External Square Tube

H. J. RIBLET, FELLOW, IEEE

Abstract —The problem of determining the characteristic impedance of a

concentric coaxiaf transmission fine having a circular inner conductor and a

square outer conductor is reexamined. The Green’s function for a rectangle

is used to determine the geometrical capacitance of a series of structures

ranging from 1-46 Q with an error less than 10 – 5. The method of analysis

is illustrated in detail for the 1-Q case. The resitlts are presented in terms

of the “outer shield factor” R ,,f, which is defined as the ratio of the

diameter of an outer circle, having the same capacitance as the outer

square, to the side of the outer square, Values of this ratio are tabulated for

impedances ranging from 1-46 Q. These values are also plotted on a curve

wfdch can Iy read with an error of the order of 0.02 il for impedances

greater than 30.

I. INTRODUCTION

The determination of the characteristic impedance of the eon-
centnc coaxial line in which the outer conductbr is a square and
the inner conductor is a circle has been the subject of numerous
treatments [1]–[16] appearing during the past forty years, In his

discussion of this problem, Cohn [10] suggested that additional

data between 30 and 2 Q would be useful. This short paper

provides this information.

Manuscript received June 25, 1982; revised March 15, 1983.
The author is with Microwave Development Labs, Needharn, MA 02194.

The treatment of this problem by Frankel [1], Oberhettinger

and Magnus [2, pp. 75–78], and later by Laura and Luisoui [13],

[14], is one in which the potential problem is solved exactly in a

doubly connected region in which die outer conductor is a

square, while the inner conductor is a four-lobed cum’e which

approaches a circle ever more closely. as its size decreases. Each

circle internal to and concentric with the square has the same

potential at eight equi-spaced points on its circumference. This

potential function, except for an additive constant, is the Green’s

function [2, p. 36] for the square which has a logarithmic singu-

larity at its center.

In this paper, a potential function is constructed, which is

nearly constant on the outer circumference of the inner conduc-

tor, by suitably combining a number of Green’s functions for the

outer square whose logarithmic singularities are all inside of this

circle.

II. Trm GREEN’S FUNCTION

Fig. 1 shows an infinite lattice of positive and negative line

charges whose logarithmic potential is zero along the boundary of

a rectangle of width 2a and height 2 b centered at the ongin. This

follows from the fact that, for every negative charge on one side

of a boundary, there is an equal positive charge mirrored in it on

the opposite side.

Consider for a moment the point Z’ which is inside the

rectangle in question. It determines a doubly infinite lattice of

line charges which differ from it in location by integral multiples

of 4a in the horizontal direction and by integral multiples of 4 b

in the vertical direction. Similar remarks can be made about the

other three line charges shown in the upper right-hand quadrant

0018-9480/83 /1000-0841 $01.(N3 01983 IEEE


